泰九韶(秦九韶公式是什么) (泰九韶著作)

秦九韶公式是什么

S=√1/4﹛a²b²-[﹙a²+b²-c²﹚/2

秦九韶的是这样的。

当然有个简化的,海伦的

S=√P﹙P-a﹚﹙p-b﹚﹙p-c﹚

p=﹙a+b+c﹚/2

同为初三吧~

秦九韶算法怎么算?举几个例子

秦九5261韶算法是中国南宋时期的数学家秦九韶提出4102的一种多项式简化算法。1653在西方被称作霍纳算法。

秦九韶算法是一种将一元n次多项式的求值问题转化为n个一次式的算法。其大大简化了计算过程,即使在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法。

一般地,一元n次多项式的求值需要经过[n(n+1)]/2次乘法和n次加法,而秦九韶算法只需要n次乘法和n次加法。在人工计算时,一次大大简化了运算过程。

把一个n次多项式f(x)=a[n]x^n+a[n-1]x^(n-1)+......+a[1]x+a[0]改写成如下形式

f(x)=a[n]x^n+a[n-1]x^(n-1))+......+a[1]x+a[0]

=(a[n]x^(n-1)+a[n-1]x^(n-2)+......+a[1])x+a[0]

=((a[n]x^(n-2)+a[n-1]x^(n-3)+......+a[2])x+a[1])x+a[0]

=......

=(......((a[n]x+a[n-1])x+a[n-2])x+......+a[1])x+a[0].

求多项式的值时,首先计算最内层括号内一次多项式的值,即   v[1]=a[n]x+a[n-1]   然后由内向外逐层计算一次多项式的值,即

v[2]=v[1]x+a[n-2]

v[3]=v[2]x+a[n-3]

......

v[n]=v[n-1]x+a[0]

这样,求n次多项式f(x)的值就转化为求n个一次多项式的值。(注:中括号里的数表示下标)

结论:对于一个n次多项式,至多做n次乘法和n次加法。

秦九韶的代表作是?

秦九韶的《数书九章》是一部划时代的巨著

秦九韶潜心研究数学多年,在湖州守孝三年,所写成的世界数学名著《数学九章》,《癸辛杂识续集》称作《数学大略》,《永乐大典》称作《数学九章》。全书九章十八卷,九章九类:“大衍类”、“天时类”、“田域类”、“测望类”、“赋役类”、“钱谷类”、“营建类”、“军旅类”、“市物类”,每类9题(9问)共计81题(81问),该书内容丰富至极,上至天文、星象、历律、测候,下至河道、水利、建筑、运输,各种几何图形和体积,钱谷、赋役、市场、牙厘的计算和互易。许多计算方法和经验常数直到现在仍有很高的参考价值和实践意义,被誉为“算中宝典”。该书著述方式,大数书九章多由“问曰”、“答曰”、“术曰”、“草曰”四部分组成:“问曰”,是从实际生活中提出问题;“答曰”,给出答案;“术曰”,阐述解题原理与步骤;“草曰”,给出详细的解题过程。此书已为国内外科学史界公认的一部世界数学名著。此书不仅代表着当时中国数学的先进水平,也标志着中世纪世界数学的最高水平。我国数学史家梁宗巨评价道:“秦九韶的《数书九章》(1247年)是一部划时代的巨著,内容丰富,精湛绝伦。特别是大衍求一术(不定方程的中国独特解法)及高次代数方程的数值解法,在世界数学史上占有崇高的地位。那时欧洲漫长的黑夜犹未结束,中国人的创造却像旭日一般在东方发出万丈光芒。”

2、秦九韶的“大衍求一术”,领先卡尔·弗里德里希·高斯554年,被康托尔称为“最幸运的天才” 秦九韶所发明的“大衍求一术”,即现代数论中一次同余式组解法,是中世纪世界数学的最高成就,比西方1801年著名数学家高斯(Gauss,1777-1855年)建立的同余理论早554年,被西方称为“中国剩余定理”。秦九韶不仅为中国赢得无尚荣誉,也为世界数学作出了杰出贡献。 3、秦九韶的任意次方程的数值解领先霍纳572年 秦九韶在《数书九章》中除“大衍求一术”外,还创拟了正负开方术,即任意高次方程的数值解法,也是中世纪世界数学的最高成就,秦九韶所发明的此项成果比1819年英国人霍纳(W·G·Horner,1786-1837年)的同样解法早572年。秦九韶的正负方术,列算式时,提出“商常为正,实常为负,从常为正,益常为负”的原则,纯用代数加法,给出统一的运算规律,并且扩充到任何高次方程中去。 此外,秦九韶还改进了一次方程组的解法,用互乘对减法消元,与现今的加减消元法完全一致;同时秦九韶又给出了筹算的草式,可使它扩充到一般线性方程中的解法。在欧洲最早是1559年布丢(Buteo,约1490-1570年,法国)给出的,他开始用不很完整的加减消元法解一次方程组,比秦九韶晚了312年,且理论上的不完整也逊于秦九韶。 秦九韶还创用了“三斜求积术”等,给出了已知三角形三边求三角形面积公式,与海伦(Heron,公元50年前后)公式完全一致。秦九韶还给出一些经验常数,如筑土问题中的“坚三穿四壤五,粟率五十,墙法半之”等,即使对现在仍有现实意义。秦九韶还在十八卷77问“推计互易”中给出了配分比例和连锁比例的混合命题的巧妙且一般的运算方法,至今仍有意义。

秦九韶(1202~1261),字道古,我国古代杰出的数学家。安岳人。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。其父秦季栖,进士出身,官至上部郎中、秘书少监。 秦九韶聪敏勤学。宋绍定四年(1231),秦九韶考中进士,先后担任县尉、通判、参议官、州守、同农、寺丞等职。先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。他在政务之余,对数学进行虔心钻研,并广泛搜集历学、数学、星象、音律、营造等资料,进行分析、研究。 宋淳祜四至七年(1244至1247),他在为母亲守孝时,把长期积累的数学知识和研究所得加以编辑,写成了闻名的巨著《数书九章》,并创造了“大衍求一术”。这不仅在当时处于世界领先地位,在近代数学和现代电子计算设计中,也起到了重要作用,被称为“中国剩余定理”。他所论的“正负开方术”,被称为“秦九韶程序”。现在,世界各国从小学、中学到大学的数学课程,几乎都接触到他的定理、定律和解题原则。秦九韶在数学方面的研究成果,比英国数学家取得的成果要早800多年。 秦九韶安岳修建的秦九韶纪念馆,恢宏壮观,雄伟气派。

如何证明海伦秦九韶公式

秦九韶

三角形

三条边

别称

斜、

三斜求积术

斜平

斜平

斜平

取相减

余数

自乘

斜平

斜平

相减

余数

4除冯所

数作

作1作

面积

所谓

程px 2=qk,p

Q

△、a,b,c表示三角形面积、

斜、

斜、

q=1/4[c 2a 2-(c%| 2+a 2-b 2/2) 2]

P=1

△ 2=q,

S△=√{1/4[c 2a 2-(c 2+a 2-b 2/2) 2]}

1/16[(c+a) 2-b 2][b62-(c-a) 2]

=1/16(c+a+b)(c+a-b)(b+c-a)(b-c+a)

=1/8S(c+a+b-2b)(b+c+a-2a)(b+a+c-2c)

=p(p-a)(p-b)(p-c)

S△=√[p(p-a)(p-b)(p-c)]

p=1/2(a+b+c)

本文来自投稿,不代表本网站立场,未经本站授权不得转载、摘编或利用其它方式使用上述作品,违者必究。

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注